On-line Prediction with Kernels and the Complexity Approximation Principle
نویسندگان
چکیده
The paper describes an application of Aggregating Algorithm to the problem of regression. It generalizes earlier results concerned with plain linear regression to kernel techniques and presents an on-line algorithm which performs nearly as well as any oblivious kernel predictor. The paper contains the derivation of an estimate on the performance of this algorithm. The estimate is then used to derive an application of the Complexity Approximation Principle to kernel methods.
منابع مشابه
Application of Artificial Neural Networks (ANN) and Image Processing for Prediction of the Geometrical Properties of Roasted Pistachio Nuts and Kernels
Roasting is the most common way for pistachio nuts processing, and the purpose of that was to increase the products total acceptability. Purpose of this study was to investigate the effect of temperature (90, 120 and 150°C), time (20, 35 and 50 min), and roasting air velocity (0.5, 1.5 and 2.5 m/s) on geometrical attributes of pistachio nuts and kernels including principle dimensions, shape fac...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملA Novel Successive Approximation Method for Solving a Class of Optimal Control Problems
This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is present...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملScalable Alignment Kernels via Space-Efficient Feature Maps
String kernels are attractive data analysis tools for analyzing string data. Among them, alignment kernels are known for their high prediction accuracies in string classifications when tested in combination with SVMs in various applications. However, alignment kernels have a crucial drawback in that they scale poorly due to their quadratic computation complexity in the number of input strings, ...
متن کامل